
Supermon: A high-speed cluster monitoring system∗

Matthew J. Sottile Ronald G. Minnich

Los Alamos National Laboratory†

Advanced Computing Laboratory

MS-B287

Los Alamos, NM 87545 USA

{matt,rminnich}@lanl.gov

Abstract

Supermon is a flexible set of tools for high speed,
scalable cluster monitoring. Node behavior can be mon-
itored much faster than with other commonly used
methods (e.g., rstatd). In addition, Supermon uses
a data protocol based on symbolic expressions (S-
expressions) at all levels of Supermon, from individ-
ual nodes to entire clusters. This contributes to Super-
mon’s scalability and allows it to function in a heteroge-
neous environment. This paper presents the Supermon
architecture and discuss initial performance measure-
ments on a cluster of heterogeneous Alpha-processor
based nodes.

1 Introduction

This paper describes Supermon, a set of tools for
high-speed, low-impact monitoring of terascale clus-
ters. The Supermon tools gather data from individual
compute nodes, combine data from all nodes into a sin-
gle cluster image, and pass the data to clients making
it naturally hierarchical. Supermon proves that low-
impact monitoring can be achieved for higher than ex-
pected sampling rates (up to 6600 samples per second
for data extraction from the OS), allowing data to be
sampled at a time-scale small enough to observe char-
acteristics of cluster behavior not previously visible.

Monitoring is the act of observing a system via a set
of sensors. Monitoring can be either periodic or reac-

∗This research is funded by the Department of Energy’s Office

of Science.
†Los Alamos National Laboratory is operated by the Univer-

sity of California for the National Nuclear Security Administra-

tion of the United States Department of Energy under contract

W-7405-ENG-36, LA-UR No. 02-3585.

tive, among other choices; in a periodic system, samples
of the sensor output are taken at regular intervals and
used to determine the state of the system; in a reac-
tive system an external event (perceived failure) causes
activation of sensor reading as an aid to diagnosis.

Monitoring can be used as an aid in management.
The values read from sensors can be used to make an
informed decision about what actions to take. Once
the actions are taken, the sensors can be read again
to determine if the action improved the state of the
system or if other actions need to be taken.

The state of the art of cluster node management is
extraordinarily primitive. The single most-used moni-
toring tool is the “ping” command: the command sends
a simple packet to a remote node, and the remote node
is supposed to reply. Typically, if a ping command fails,
the only option is to reboot the node, via reset or power
off. Once the node is rebooted, any information about
the problem that precipitated the failure is lost.

Even if the ping command succeeds, the node may
still be unusable due to other problems. A commonly-
used problem determination sequence is as follows:

• A user notices that a job has not completed in a
normal way, and contacts the system administra-
tor.

• The sysadmin tries to log onto the node, which
may or may not succeed.

• If the login fails, the sysadmin pings the node.
Even if the ping works, there is no way to get onto
the node, so the sysadmin must walk to the node
and reboot it.

• If the ping fails, then the only option is to walk to
the node and reboot it.

1



As this discussion shows, there are only two sensors
in use in most clusters: the first sensor is the process
that supports remote login; the second sensor is the
process that responds to remote pings. These sensors
are almost always used in a reactive manner, i.e., in re-
sponse to perceived problems, and in many cases long
after the failure that caused the error. Actually isolat-
ing the failure takes second place to getting the node
back up and running again; the result is a lack of long-
term data to allow precise problem determination.

For terascale and beyond clusters these management
techniques are not sufficient and in fact may be impos-
sible. We need to move to periodic monitoring of clus-
ter nodes, and we need to make much better use of the
available data.

In addition, for production clusters where downtime
is to be minimized and long runtimes for jobs are highly
desirable, monitoring becomes an important practice
required to accomplish these goals. Monitoring any
system, from physical entities to the state of a com-
puter, introduces a small but unavoidable perturbation
into the actual system. In the case of cluster monitor-
ing, the act of monitoring can cause additional load on
both compute nodes and the interconnection network
binding them together.

In this paper we describe Supermon, a high-speed,
low-impact monitoring tool for terascale clusters. Su-
permon uses symbolic expressions to represent data at
all levels (kernel, node, concentrator) making it nat-
urally composable and hierarchical. We demonstrate
the power of symbolic data representation for kernel
data, both as an efficient mechanism for encapsulating
complex datatypes, but as a self-describing format that
can be applied to many problems. We will present per-
formance results based on benchmarks using high sam-
pling rates at the kernel, single-node, and whole cluster
level. For the entire paper, our working environment
will be the LANL ACL 128 node Alpha Linux cluster,
composed of a mixed set of nodes including Compaq
DS-10, API CS-20, and Compaq ES-40 systems con-
taining 1, 2, and 4 CPUs respectively.

2 Related Work

As mentioned in the previous section, modern clus-
ter monitoring only exists as an undisciplined set of
steps that is performed as a reaction to failure. Prod-
ucts that claim to provide monitoring simply provide
a GUI on top of a tool that performs a subset of these
steps (i.e., ping) [4, 8].

Current Linux-based monitoring tools are based on
the SunRPC “remote status” (rstat) protocol [7]. In
previous work, we showed that the Linux implemen-

tation of rstatd is very slow and has severe impact on
the machine being monitored [5]. Moreover, this pro-
tocol was defined almost 20 years ago, before systems
with SMPs and hot-plug network interfaces and disks
were common. The type of data it returns is fixed,
and the quantities are fixed. For example, CPU and
network interface information is gathered into a single
field so there is no clean way to handle SMPs or ma-
chines with multiple network interfaces. The interface
is not extensible, so there is is no provision for new
sensor data such as from hardware monitors.

In the same paper, to overcome the performance
limitations of rstatd, we created a monitoring package
(also called Supermon) which included a kernel patch
allowing data to be extracted from the kernel using
a call to sysctl(). The kernel module gathered all
of the required data that rstat provided, and pushed
them out through a single system call to the calling
program. This increased performance significantly, al-
lowing sampling rates of over 30Hz per node.

This paper addresses the other serious problem of
rstat, the archaic, protocol interface that is not exten-
sible and not composable.

3 Architecture

The Supermon cluster monitoring system is split
into three distinct components as shown in Figure 1:
a loadable kernel module providing data, a single node
data server (mon), and a data concentrator (Super-
mon) to compose samples from many nodes into a sin-
gle data sample. The kernel module provides data sam-
ples through an entry in the /proc filesystem on Linux,
while the single node server and data concentrator al-
low clients to retrieve data samples through TCP sock-
ets. Clients that wish to use this data must connect
to one of the three components, all of which speak
the same protocol, and parse the data into whatever
form they require. This protocol is based on symbolic
expressions, or s-expressions, originally introduced as
part of the LISP programming language by John Mc-
Carthy in the 1950s as a recursively defined, simple
symbolic format for data representation [3].

3.1 The Protocol

The Supermon protocol is a client-server protocol.
The protocol packets consist of s-expressions. Un-
like SunRPC packets, the s-expressions contain self-
describing data, so none of the RPC Compiler or
XDR [6] tools are needed. S-expressions were intro-
duced as part of the LISP programming language in



Supermon

mon

/proc

mon

/proc

mon

/proc

supermon

. . .
Node nNode 2Node 1

Client

Figure 1. The major architectural components
of Supermon and their relationships.

the 1950s. Their simple, recursive form allows them to
encode arbitrarily complex data.

Another useful property of s-expressions is that they
are not fixed-size, and they are not binary data. Stan-
dard RPC packets have a very strictly controlled binary
format and size, as one way to achieve architecture
independence. S-expressions in contrast can vary in
size as needed, and achieve architecture independence
by eliminating binary data entirely. As we discussed
above, moving textual data instead of binary data has
actually proven to be more efficient for Supermon.

We put the power of s-expressions to good use in
Supermon. Possibly the most interesting aspect of the
Supermon protocol is that it is composable. Super-
mon clients can serve as Supermon servers. An indi-
vidual Supermon server can act as a client and aggre-
gate the s-expression streams from multiple Supermon
servers, and these servers in turn can also aggregate
other streams. Standard RPC servers, such as auto-
mounters, can do limited composition, but aggregation
is extremely difficult and involves loss of information
from the initial server to the final client. The Super-
mon protocol supports aggregation with no loss of in-
formation. Scalability and composability are also im-
portant requirements for the protocol since it will be
used on very large clusters. S-expressions are used at
all levels of Supermon from the kernel module that pro-
vides the initial data to client applications making it
naturally hierarchical. Each part of Supermon that re-
quires s-expression manipulation is able to use a com-
pact, efficient s-expression parser provided as part of
the distribution.

(cpuinfo

(user 232007070)

(nice 1314934)

(system 0))

(avenrun (avenrun0 2060) (avenrun1 2056)

(avenrun2 2048))

(paging (pgpgin 16) (pgpgout 0) (pswpin 0)

(pswpout 0))

(switch (switch 549615))

(time (timestamp 0xec05d78898)

(jiffies 0xebd2e4b))

(netinfo

(name lo eth0 eth1)

(rxbytes 0 0 45681848671)

(rxpackets 0 0 31522281)

(rxerrs 0 3 0)

(rxdrop 0 0 0)

...

)

Figure 2. Supermon output from the kernel
module for the S command.

3.2 The Kernel Module

The kernel module is a dynamically loaded module
that inserts an entry into the /proc/sys tree in the
Linux kernel. The entry is a directory named supermon

with two nodes, S and #.

The S entry returns Supermon data in s-expression
form as shown in Figure 2. Data are grouped into cat-
egories. In each category are a number of named fields
with their values. There can be more than one set of
values for named fields, as can be seen in the netinfo

entry. This machine has three ethernet interfaces (lo,
eth0, and eth1) so each of the named fields has three
elements, one for each interface. The first component
of the netinfo list is the set of names of the inter-
faces. On a laptop, interfaces come and go as cards are
plugged in. Supermon data will reflect this change: as
the interfaces appear and disappear the size of the lists
will change. Supermon data can be dynamic in a way
that is difficult or impossible for sysctl entries.

The # entry returns data descriptors, also in s-
expression format, as shown in Figure 3. The format of
the lists is the same for all categories: category name
(e.g., cpuinfo), cardinality of the category ((nr 1)),
and the field names for the category (e.g., user). In
the example shown, the cpuinfo field has a cardinality
of one; on an SMP with 2 or 4 CPUs, it has a cardinal-
ity of 2 or 4. The netinfo category has a cardinality



(cpuinfo (nr 1) (user nice system)

)

(avenrun (nr 1) (avenrun0 avenrun1

avenrun2))

(paging (nr 1) (pgpgin pgpgout pswpin

pswpout))

(switch (nr 1) (switch))

(time (nr 1) (timestamp jiffies))

(netinfo (nr 3) (

name rxbytes rxpackets rxerrs rxdrop

rxfifo rxframe rxcompressed rxmulticast

txbytes txpackets txerrs txdrop txfifo

txcolls txcarrier txcompressed)

)

Figure 3. Supermon output from the kernel
module for the # command.

of 3, since this machine has three interfaces; again, if
interfaces come and go the cardinality will change.

Note that the data has structure that is self-
describing and easily parsed by programs (or people).
This output format is far more useful than the stan-
dard Linux /proc format entries, which we show in
Figure 4. The standard Linux entries follow no partic-
ular format. Cpuinfo is presented as name-value pairs
separated by colons. Meminfo is partly a table (first
three lines) and partly name-value pairs (the rest of the
lines). Slabinfo is the most confusing: at least the first
line does describe the origin of the data i.e. the slab
allocator, but the remaining lines present data which
has no clear meaning.

We do not currently provide swapinfo or meminfo
statistics. These have proven far too costly to query at
speed. We described the problems in previous work [5].

3.3 Mon and Supermon

To move data from the kernel out to clients, two
small server programs are required to provide the data
via TCP at the single and multiple node level. At a
single node, the kernel module provides data in its two
entries in /proc. The “mon” server acts as the in-
termediate filter between /proc and TCP clients. It
parses the s-expressions found in /proc, adding a min-
imal amount of information, and passes the data to
clients on demand. For each client that connects, mon
maintains a bitmask reflecting the fields of data that
the particular client wants returned in a sample. This
allows mon to filter data and reduce wasteful network
traffic.

processor : 0
vendor id : GenuineIntel
cpu family : 6
model : 8
model name : Pentium III (Coppermine)
...
total: used: free: shared: buffers: cached:
Mem: 262381568 233357312 29024256
0 25935872 78348288
Swap: 479473664 569344 478904320
MemTotal: 256232 kB
MemFree: 28344 kB
MemShared: 0 kB
...
slabinfo - version: 1.1 (statistics)
kmem cache 54 58 136 2 2 1 : 54 54 2 0 0
...

Figure 4. Three different /proc entries:
cpuinfo, meminfo, and slabinfo.

If clients wish to see a snapshot of a set of nodes
in each sample, a second server called “Supermon” is
provided. Supermon connects to a set of nodes that
are running mon servers and acts as a data concentra-
tor, presenting data sampled from many mon servers
as a single data sample. The data format provided to
clients by Supermon is identical to the format provided
by mon. This allows many Supermon servers to be cre-
ated, each sampling from a subset of the nodes within
a cluster. Another Supermon could then be started
to connect to the other Supermon servers monitoring
portions of the cluster. Hierarchical Supermon servers
can improve performance in situations where a cluster
has many nodes and sampling rates are high. In ad-
dition to the ability to build hierarchical Supermons,
Supermon also provides a similar bitmask based filter
for each client, which is then used to improve efficiency
between the Supermon/mon and Supermon/client con-
nections.

4 Performance

The majority of time spent in development was ded-
icated to making each portion of the system as efficient
as possible. Efficiency at each level allows Supermon to
achieve the high sampling-rate goal that was unreach-
able with older monitoring tools. In this section, we
present performance results for the kernel module, the
kernel module plus mon, and the kernel module plus
mon plus Supermon in multiple configurations.



4.1 Perturbation and monitoring

Before presenting the performance results that we
have observed for the Supermon system, we should
briefly discuss the reason why high peak sampling rates
are critical for a good monitor. It is a well known
fact that any monitoring system will perturb the sys-
tem being monitored. Roughly speaking, perturbation
in our context results from consumption of the moni-
tored resources by the monitor itself. Any observation
of a portion of the system, such as network traffic or
CPU cycles, will reflect usage by both the monitor and
the applications running on the system. Specifically,
a particular metric will have an actual value Sactual

and an observed value Sobserved. Perturbation causes
Sobserved = Sactual + Serror, where Serror is the over-
head caused by the monitor. Exact values are rarely
necessary when monitoring, so some error ε in mea-
surements is tolerable.

A good monitoring system will ensure that the over-
head is lower than the tolerable error, so that ε >

Serror. Looking specifically at the relation of the peak
sampling rate and this tolerable error, must consider
what the peak sampling rate implies about the system.
The sequence of software and hardware components
involved in monitoring will have some bottleneck re-
source that will become saturated and act as a limiting
factor for the peak sampling rate[2]. When this rate is
reached, this component will be completely saturated.
The monitor that can sample at a higher peak rate will
not saturate this resource when used at the peak rate
of the slower monitor.

Furthermore, if we assume that an application will
require a fixed sampling rate significantly lower than
either peak sampling rate, we know that the bottle-
neck resource will have a lower utilization for the sys-
tem with a higher peak. This will result in a lower
Serror term for the faster monitoring system, thus de-
creasing the perturbation caused by that monitor in
sampling. If two monitoring systems are available with
peak sampling rates such as R and 2R, then the uti-
lization of the saturated resouce will be roughly x

R
and

x

2R
respectively for a fixed sampling rate of x.1 Since

this resource utilization is intimately tied to the per-
turbation of the system by the monitor, it is clear why
higher peak rates will yield a less intrusive monitor in
practice.

1Not all resource consumption is linearly related to the sam-

pling rate, such as memory usage. It is the resources that are

linearly related to the sampling rate that are important to con-

sider at high sampling rates.

Node Type CPUs Memory Number
DS-10 1 1GB 104
CS-20 2 2GB 16
ES-40 4 16GB 4

152 200GB 124

Table 1. The LANL ACL xed testbed cluster.

Benchmark Data Size Nodes
Kernel 800 bytes 1
Mon 950 bytes 1

Supermon (950*N) bytes N

Table 2. Approximate data sizes for each
benchmark.

4.2 The benchmark environment

The environment in which we ran all of our bench-
marks is described in this section. The system used
was the LANL ACL xed cluster, which is composed
of three types of Compaq Alpha-based compute nodes.
There are a total of 124 nodes, containing 152 pro-
cessors with a total of 200GB of memory. The DS-
10 and CS-20 nodes are interconnected using switched
100 megabit ethernet, while the ES-40 nodes are con-
nected to the 100 megabit ethernet switch using gigabit
ethernet. The specifications of the nodes are given in
Table 1.

The benchmarks were run from the front end node,
which is a single ES-40 used for starting jobs and con-
trolling compute nodes. Jobs are issued to compute
nodes and managed by BProc [1], which provides a
single-system image with respect to processes. Each
benchmark attempts to read Supermon data samples
as many times per second as possible, slowly working
from a small number of samples up until the duration
of sampling takes longer than a single second. Each
sample contains all possible data provided by Super-
mon to reflect the performance in the worst case. In
general, applications will request only a subset of the
data, and will be capable of higher sampling rates than
those that we report. The approximate data sizes are
shown in Table 2, with variation of about 5-10 bytes
per sample depending on the data values being trans-
ported.

4.3 Kernel module performance

The first performance test involves measuring the
maximum sampling rate for a program reading directly



0 500 1000 1500 2000 2500 3000 3500

samples

0.0

0.5

1.0

ti
m

e 
(s

ec
on

ds
)

rstat
/proc

Figure 5. Number of samples vs time for /proc
and rstat. /proc achieves a peak sampling
rate of 3500 Hz while rstat can only achieve
300 Hz.

from the entries in /proc provided by the Supermon
kernel module. We compare the performance of this
portion of Supermon to the method used by RPC
rstat to gather its data. The lowest sampling rates
we found from /proc were 3400Hz on the DS-10 and
CS-20 nodes, while the ES-40 nodes achieved 6000Hz.
This test was also run on an Intel Pentium III machine,
with performance comparable to the ES-40.

Comparing this to the performance of the
get stats() call used by rstat to gather performance,
we find that we see a huge performance improve-
ment (Figure 5). Using the same benchmark program
used for measuring /proc with a minor change to call
get stats() instead of reading a file, we observe a
peak performance of 300Hz. Not only is this an order
of magnitude slower than /proc, later we will see that
this is slower than the sampling rates observed after
the data has passed through a single mon process and
a single Supermon process.

4.4 Mon performance

To measure the performance of mon and Supermon,
we used a similar program as used for measuring /proc.
Instead of opening a file handle and reading, the bench-
mark opened a socket to the data server, sent a com-
mand asking for all data provided by the server, and
read it before sending another request. In the case
where mon is observed, the data must pass over two
channels - first, it is read from the /proc entry and
then sent between mon and the client over TCP.

4.5 Supermon performance

Using the same benchmark used for mon (since they
use the same protocol), we measured the maximum
sampling rate for various configurations of Supermon.
The first is the case where Supermon is gathering data
from a single mon process (Figure 6). This allows us
to observe the effects of multiple hops across the net-
work. For the case of multiple nodes, we tested with 5,
10, 20, and 100 nodes being monitored by a single Su-
permon process. Finally, we tested the performance of
Supermon when they are constructed in a hierarchical
topology using two cases: where each Supermon has
a fanout of 10 nodes, and where each Supermon has
a fanout of 50 nodes. At the root of the hierarchy a
single Supermon process was used to gather the entire
cluster data set from the Supermons observing subsets
of nodes.

To make the test environment closer to one that
would be encountered in practice, we took care to lay
the Supermon servers out so that each Supermon was
run on the first compute node in each subset of nodes.
For example, if we were to monitor 100 nodes in groups
of 10, a Supermon server would be run on node 0, 10,
20, etc. The Supermon server responsible for gathering
data from each subset of nodes was run on a computer
outside of the set of compute nodes, and the client was
run on the cluster front end. This separation of Su-
permons was done for two reasons. First, we wanted
to avoid overwhelming a single machine with many Su-
permon servers exchanging data. Second, we wanted to
avoid any effects caused by loopback devices or TCP
optimizations for socket communication within a single
computer. This would generate results that would po-
tentially show higher sampling rates, but it disregards
the effect of the network on the monitoring process.

In Table 4.5, we show the performance results when
testing the scalability of Supermon. The number of
nodes corresponds with the number of mon servers a
single Supermon connects to. In the case where all
100 DS-10 nodes were monitored, we provide three dif-
ferent cases to show the effect of hierarchical Super-
mon servers on performance. The basic case involves
a flat topology where a single Supermon connects to
100 nodes. When composing Supermon servers into a
tree topology, we test the cases where each Supermon
connects to 10 clients (a single Supermon connected
to 10 other Supermons, each of which is connected to
10 mons), and where a single Supermon connects to
two Supermons responsible for monitoring half of the
cluster each (50 mons). We were surprised to find that
contrary to popular belief, hierarchy is not guaranteed
to increase performance. In our case we showed that



0 500 1000 1500 2000 2500 3000 3500

samples

0.0

0.5

1.0

ti
m

e 
(s

ec
on

ds
)

/proc
mon
supermon

Figure 6. Number of samples vs time, com-
paring sampling rate from /proc, mon, and
Supermon. Illustrates decrease in maximum
sampling rate due to the network.

Nodes Sampling Rate
5 400Hz
10 225Hz
20 125Hz

100 Flat 66Hz
100 10-node fanout 57Hz
100 50-node fanout 35Hz

Table 3. Scaling results for Supermon.

the additional network traffic between the layers of Su-
permon servers impacted negatively on the sampling
rates achieved.

5 Conclusions and Future Work

Supermon is a set of tools for monitoring clusters at
data rates heretofore impossible. Using Supermon we
have been able to observe fine-grain behavior in sys-
tems built with MPI that has never before been seen.
Supermon demonstrates the importance of having high
data rate, low-impact cluster monitoring. The perfor-
mance of the monitoring system is crucial. Formerly,
the only tools available (e.g. xload, xmeter, and other
rpc.rstated-based tools) would have adverse impact on
applications running on the cluster nodes at 10 Hz.,
and did not produce enough information to be usable.

We have shown that we can extract self-describing
data from the kernel at a high data rate, up to 6000
samples/second on a Pentium 3/800 system. This data
rate is as fast as using the sysctl interface [5], and over

100 times faster than the current generation of /proc
interfaces. There need be no penalty for using /proc

for gathering kernel statistics.

We have found that S-expressions are an ideal in-
terface for getting information from the kernel. S-
expressions have a structure that can handle kernel re-
sources coming and going (e.g. PCMCIA cards), which
no existing Linux interface can support. We feel that
all existing Linux /proc interfaces should be redone to
use S-expressions, replacing the current large number
of inconsistent output formats.

Supermon also shows that RPC-based protocols
such as SunRPC are neither necessary nor sufficient
for this type of monitoring. They are not necessary as
they have no performance advantage over the textual
Supermon protocol. They are not sufficient as they
do not handle variable-sized data well, and worse, re-
quire complex overhead at each end for converting data
between architecture types. The textual S-expression
format is inherently architecture-independent and just
as efficient. It is long past time to retire SunRPC for
this use and to eliminate the rpc.rstatd daemons as
well.

Our next steps for Supermon are to further test scal-
ing. We are looking at placing intermediate daemons
(filtermons) in the tree to aggregate the data, so that
a collection of, e.g., 32 nodes would be presented as an
average. We will be putting more hardware informa-
tion into Supermon, in addition to the limited network
hardware statistics we have now. We will also be tying
Supermon into our scheduler, so that the scheduler can
make scheduling decisions based on hardware availabil-
ity.

In addition to improving the monitoring system, we
will also be looking at techniques for analyzing mon-
itoring data for failure prediction, algorithm analysis,
and performance optimization. In keeping with the
spirit of the monitoring framework, the analysis tech-
niques will not only be looked at from an analytical
perspective but in terms of their computational com-
plexity. This focuses on their ability to produce results
using high-speed data samples at runtime instead of
post-mortem analysis of stored monitoring data.

References

[1] Erik Hendriks. BProc: The Beowulf Distributed
Process Space. Submitted for publication, 2002.

[2] Raj Jain. The Art of Computer Systems Perfor-
mance Analysis, chapter 33, pages 563–567. John
Wiley and Sons, Inc., 1991.



[3] John McCarthy, et al. LISP 1.5 Programmer’s
Manual, 2nd edition. MIT Press, 1965.

[4] Sean MacGuire. The Big Brother Unix Network
Monitor. http://www.csd.uwo.ca/bb/bb-info.html.

[5] Ronald Minnich and Karen Reid. Supermon: High
performance monitoring for linux clusters. In
The Fifth Annual Linux Showcase and Conference,
2001.

[6] Sun Microsystems, Inc. XDR: External data repre-
sentation standard. Network Working Group RFC
1014, http://www.ietf.org/rfc/rfc1014.txt, 1987.

[7] Sun Microsystems, Inc. RPC: Remote pro-
cedure call protocol specification version
2. Network Working Group RFC 1057,
http://www.ietf.org/rfc/rfc1057.txt, 1988.

[8] TurboLinux. Powercockpit white paper.
http://www.powercockpit.com/markets/index.html.


